MDI and Argonne National Lab were recently invited to Adler After Dark at the Adler Planetarium where we showcased our Single-Axis Acoustic Levitator as part of Back to the Future night. We had a great time demonstrating our tech to the public and explaining the underlying science to all who were interested. More spectacularly, MDI was invited out to Los Angeles to film two awesome videos over the summer! With Destin Sandlin of Smarter Every Day on YouTube, we explained how acoustic levitation works and captured some amazing high speed footage using two Phantom cameras. Destin was so great to work with and the footage is spectacular; it's linked on our homepage if you missed it. At the same time, we filmed a bit for American Idol Season 14. In a short segment sponsored by Ford, the singers met with Destin, learned some science, and got to experiment with MDI's Single-Axis Acoustic Levitator themselves! Of course it's not all fun and games at MDI, as we've also been very busy developing new features for our products and our customers. We've got some exciting new capabilities that we just can't wait to announce soon!

MDI is continuing basic and applied instrument development research to develop instruments for materials processing in extreme conditions. Recent accomplishments include implementation of XANES (X-ray Absorption Near-Edge Structure) and high energy x-ray diffraction measurements at the Advanced Photon Source to investigate iron oxidation state in molten geological materials. MDI staff are presenting papers at upcoming conferences, including ACerS GOMD-DGG 2015, PNCS XIV, and the SGT Annual Conference (links on the right). We've been putting our new 3D printer to good use making handy accessories, prototypes, and mockups for planned experiments on molten nuclear energy-related materials.

MDI scientists, in collaboration with Argonne National Laboratory and Stony Brook University, have published the results of structure measurements on molten titanium dioxide and uranium dioxide in Physical Review B and Science, respectively. These findings come from recent experiments utilizing MDI's unique HT-CNL™ system through MDI's continued mission to support research on extreme condition materials at both the Advanced Photon Source at Argonne National Laboratory and the Spallation Neutron Source at Oak Ridge National Laboratory. MDI also delivered and installed two SAL™ instruments to commercial clients in Japan and the UK.

MDI completed successful beamline campaigns at the Advanced Photon Source at Argonne National Lab in Illinois and the Spallation Neutron Source at Oak Ridge National Lab in Tennessee to study various high temperature melts, including molten uranium oxide.

MDI installed HT-CNL systems in the Department of Physics at Coe College in Cedar Rapids, IA and also at Oak Ridge National Laboratory's Spallation Neutron Source in Oak Ridge, TN. Both instruments are being used for research on liquids and glasses. The instrument at Oak Ridge will also be used at their high flux neutron beamlines to make in-situ structure measurements on liquids. The planned new structure measurement capability will complement an existing system at the Advanced Photon Source, Argonne National Laboratory.

MDI completed a Phase I SBIR project by the National Institutes of Health and it is working on a Phase II project to commercialize our image plate technology. The objective of the project is to produce and scale up optical quality fluoride glass plate materials. The glasses can be doped with optically active ions and heat treated to form materials that can store X-ray images. The process exploits a photostimulable luminescent (PSL) effect in the glasses. After exposure to X-rays, the plate can be read using a laser device. Compared to other methods, the new technology provides high resolution and lower X-ray dosages for patients in procedures such as mammography. In addition, the use of glass plates offers cost advantages over competing digital techniques. MDIs experience in glass development is being used to optimize glass processing and properties to make image plates up to 24 x 30 cm in size.
The new project complements collaborations with researchers at The University of Tennessee, Stony Brook University, The University of Chicago and The University of Paderborn.

MDI's HT-CNL at Argonne National Laboratory's Advanced Photon Source was used to investigate the structure of undercooled melts that can undergo liquid-liquid phase transitions. The research is part of an international collaboration between scientists based in the UK, France, and the USA. The work is published in the journal Science (Vol. 322, pp. 566-570, 2008 and This Week in Science Vol. 322, pp. 501, 2008). A related News and Views article appears in Nature Materials (Vol. 7, pp. 843-844, 2008).

Heat treated glass test plate developed by MDI. This device demonstrates that high-resolution images can be made using nanophase storage phosphors.

MDI History

Andrew Pottebaum processing glass x-ray image plates.

Sonia Tumber and Amit Tailor making glass x-ray plates.

MDI Team at Argonne National Lab, December, 2013.                  (Pictured L to R: Lawrie Skinner, Rick Weber, Anthony Tamalonis, Chris Benmore, and Ollie Alderman)

Charlie Rey working on furnace electronics.